Filipin-dependent Inhibition of Cholera Toxin: Evidence for Toxin Internalization and Activation through Caveolae-like Domains

نویسندگان

  • Palmer A. Orlandi
  • Peter H. Fishman
چکیده

The mechanism by which cholera toxin (CT) is internalized from the plasma membrane before its intracellular reduction and subsequent activation of adenylyl cyclase is not well understood. Ganglioside GM1, the receptor for CT, is predominantly clustered in detergent-insoluble glycolipid rafts and in caveolae, noncoated, cholesterol-rich invaginations on the plasma membrane. In this study, we used filipin, a sterol-binding agent that disrupts caveolae and caveolae-like structures, to explore their role in the internalization and activation of CT in CaCo-2 human intestinal epithelial cells. When toxin internalization was quantified, only 33% of surface-bound toxin was internalized by filipin-treated cells within 1 h compared with 79% in untreated cells. However, CT activation as determined by its reduction to form the A1 peptide and CT activity as measured by cyclic AMP accumulation were inhibited in filipin-treated cells. Another sterol-binding agent, 2-hydroxy-beta-cyclodextrin, gave comparable results. The cationic amphiphilic drug chlorpromazine, an inhibitor of clathrin-dependent, receptor-mediated endocytosis, however, affected neither CT internalization, activation, nor activity in contrast to its inhibitory effects on diphtheria toxin cytotoxicity. As filipin did not inhibit the latter, the two drugs appeared to distinguish between caveolae- and coated pit-mediated processes. In addition to its effects in CaCo-2 cells that express low levels of caveolin, filipin also inhibited CT activity in human epidermoid carcinoma A431 and Jurkat T lymphoma cells that are, respectively, rich in or lack caveolin. Thus, filipin inhibition correlated more closely with alterations in the biochemical characteristics of CT-bound membranes due to the interactions of filipin with cholesterol rather than with the expressed levels of caveolin and caveolar structure. Our results indicated that the internalization and activation of CT was dependent on and mediated through cholesterol- and glycolipid-rich microdomains at the plasma membrane rather than through a specific morphological structure and that these glycolipid microdomains have the necessary components required to mediate endocytosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Internalization of cholera toxin by different endocytic mechanisms.

The mechanism of cholera toxin (CT) internalization has been investigated using Caco-2 cells transfected with caveolin to induce formation of caveolae, HeLa cells with inducible synthesis of mutant dynamin (K44A) and BHK cells in which antisense mRNA to clathrin heavy chain can be induced. Here we show that endocytosis and the ability of CT to increase the level of cAMP were unaltered in caveol...

متن کامل

The p21 Rho-activating toxin cytotoxic necrotizing factor 1 is endocytosed by a clathrin-independent mechanism and enters the cytosol by an acidic-dependent membrane translocation step.

Cytotoxic necrotizing factor 1 (CNF1), a protein produced by pathogenic strains of Escherichia coli, activates the p21 Rho-GTP-binding protein, inducing a profound reorganization of the actin cytoskeleton. CNF1 binds to its cell surface receptor on HEp-2 cells with high affinity (K(d) = 20 pM). In HEp-2 cells the action of CNF1 is not blocked in the presence of filipin, a drug described to redu...

متن کامل

Caveolin-1 regulation of dynamin-dependent, raft-mediated endocytosis of cholera toxin–B sub-unit occurs independently of caveolae

Ganglioside GM1-bound cholera toxin-B sub-unit (CT-b) enters the cell via clathrin-coated pits and dynamin-independent non-caveolar raft-dependent endocytosis. Caveolin-1 (Cav1), associated with caveolae formation, is a negative regulator of non-caveolar raft-dependent endocytosis. In mammary epithelial tumour cells deficient for Mgat5, Cav1 is stably expressed at levels below the threshold for...

متن کامل

Endocytosis via caveolae.

Caveolae are flask-shaped invaginations present in the plasma membrane of many cell types. They have long been implicated in endocytosis, transcytosis, and cell signaling. Recent work has confirmed that caveolae are directly involved in the internalization of membrane components (glycosphingolipids and glycosylphosphatidylinositol-anchored proteins), extracellular ligands (folic acid, albumin, ...

متن کامل

G Activation of Src Induces Caveolae-mediated Endocytosis in Endothelial Cells*

Caveolae-mediated endocytosis in endothelial cells is stimulated by the binding of albumin to gp60, a specific albumin-binding protein localized in caveolae. The activation of gp60 induces its cell surface clustering and association with caveolin-1, the caveolar-scaffolding protein. This interaction leads to Gi-induced Src kinase activation, which in turn signals dynamin2-mediated fission and d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 141  شماره 

صفحات  -

تاریخ انتشار 1998